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Abstract—TIt is shown that certain regularities exist in the exact solutions of the partial differential
equation of uniform-property heat transfer published by Gardner and Kestin [3] and Smith and
Shah [4]. These regularities permit the development of approximate formulae for the Stanton number
which are probably as reliable, as means of predicting heat transfer, as are the solutions based on
numerical integration.

The solutions are generalized so as to hold for the case in which the “turbulent Prandtl number” isa

constant differing from unity, and it is argued that a value in the neighbourhood of 0:887 should be
used in future work. A discussion is presented of the way in which the theory can be extended to:
rough walls; mass transfer at a finite rate; and non-uniform fluid properties.
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of first appearance.
wall temperature downstream of line
heat sink (28);
specific heat at constant pressure
(Btu/lb degF) (4);
local drag coefficient (16);
a constant (20);
(laminar) thermal conductivity (Btu/
ft h degF);
total thermal conductivity (Btu/fth
degF) (4);
a constant (20);
local mass-transfer flux (Ib/fi2h);
(laminar) Prandtl number (=cu/k)
(10);
turbulent Prandtl number (49);
Reynolds number based on x (35);
recovery factor (64);
Stanton number (11);
“extra thermal resistance”
laminar sub-layer (27);
strength of line heat sink (Btu/fth)
(28);
heat flux to the wall (Btu/ftZh) (19);
contribution to recovery factor made
by the laminar sub-layer (64);
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non-dimensional heat-transfer coeffi-
cient (13);
non-dimensional
cient (16);
temperature (°F) (1);

non-dimensional temperature (31);
velocity along the wall (ft/h) (5);
non-dimensional velocity (1);

distance along a streamline (ft) (2);
non-dimensional velocity along a
streamline (1);

distance from and normal to the wall
(ft);

non-dimensional distance from
normal to the wall (44);
nominal height of roughness element
(ft) (62);

non-dimensional height of roughness
element (62);

heat-transfer coefficient (Btu/ft2h degF)
(12);

non-dimensional total viscosity (1);
non-dimensional total thermal con-
ductivity (1);

(laminar) dynamic viscosity (Ib/ft h)
(3);

total viscosity (Ib/ft h) (3);

density (Ib/ft3) (2);

shear stress at wall (1b/ft h?) (2);

heat-transfer coeffi-

and
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¢, non-dimensional distance from wall
(N;
¢, turbulent contribution to ¢ (48).
Subscripts
G, main stream;
S, wall;
1, value pertaining to Npy = Npy,1; except

in the case of u;” where the “‘join of
the laminar and turbulent layers’ is
referred to.

1. INTRODUCTION
1.1 Previous work

Several papers have appeared recently which
attempt to develop an exact theory of heat
transfer through the uniform-property turbulent
boundary layer. They are distinguished from
earlier work in this field by the fact that they rest
on exact solutions of a partial differential
equation for convective heat transfer in a flow
field characterized by the so-called universal
turbulent velocity profile, i.e. the “law of the
wall”. Unlike the older Couette-flow analyses,
in which variations of temperature in the flow
direction are neglected, they can, therefore, be
expected to give precise agreement with experi-
ment provided only that the thermal boundary
layer is appreciably thinner than the velocity
boundary layer and that the true properties of
the latter are incorporated.

The relevant partial differential equation was
derived in [1], where a solution was presented
for a Prandtl number of unity and a prescribed
wall-temperature distribution; the solution was
obtained by means of an analogue computer.
Kestin and Persen [2] obtained a more exact
solution for this problem, using a digital com-
puter; their work was extended to non-unity
Prandtl numbers by Gardner and Kestin [3].
Smith and Shah [4] obtained digital-computer
solutions to the same differential equation for
three Prandtl numbers for the case in which the
heat flux is specified rather than the wall
temperature.

In all the above papers, the specification of the
properties of the flow field was that of [1], with
minor variations in the constants. It is probable,
as will be argued later in the present paper, that
this specification is inadequate, particularly in
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its implication that the effective Prandtl number
in the turbulent part of the boundary layer is
unity. It is, therefore, important to distinguish
the main structure of the theory, which can be
regarded as exact, from the particular formula-
tions of the flow-field properties, which will
probably require amendment in the light of more
complete experimental information.

1.2 Purposes of the present paper

The solutions to the partial differential
equation which have been obtained permit a
number of interesting conclusions to be drawn.
Regularities appear in them which permit new
solutions to be generated without extensive
further computations; these regularities incident-
ally provide a certain degree of rehabilitation
to the Couette-flow analysis which the theory
was designed to replace. When, however, the
implications of the theory for flat-plate heat
transfer are compared with experimental data,
the assumption that the effective kinematic
viscosity and thermal diffusivity in the turbulent
region are equal ceases to be tenable. Fortun-
ately the abandonment of this assumption does
not entail the discarding of the computations
already carried out: they can be made applicable
to any uniform value of the turbulent Prandtl
number.

It is the purpose of the present paper to point
out and explain the regularities referred to, and
to simplify, extend and generalize the existing
solutions to the partial differential equation.
In addition, it is proposed to discuss the way in
which the theory can be extended to heat
transfer from rough surfaces, to mass transfer
at a finite rate, and to flows with non-uniform
fluid properties.

2. SIMPLIFICATION AND EXTENSION OF THE
EXISTING SOLUTIONS
2.1 Nature of the mathematical problems and
their solutions.

The differential equation. The temperature T
in a uniform-property universal turbulent
boundary layer, whether two-dimensional or
axi-symmetrical, has been shown in [1] to be
governed by the partial differential equation:

oT I ¢ (e,;’ oT )

oxt  ute) out\el out

Q)
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where
X =) tptdy Q)
€ =m/p = ¢, (u?) 3
& = kif(qw) = € (u*) )
p = uf(s/p)/? (5)
and

7s, shear stress at wall;

p, fluid density;

i, fluid viscosity;

x, distance along wall in flow direction;

ut, total (i.e. laminar plus turbulent) viscosity;

k¢, total (i.e. laminar plus turbulent) thermal
conductivity;

¢, specific heat of fluid at constant pressure;

u, time-mean velocity in the x direction.

The differential equation may be re-written,
for convenient numerical integration, in terms
of a new independent variable ¢, as:

JoT 1 &r
oxt T utep o2 ©)
where
ut ¢t
f = J u! du+. (7)
0 €,

Of course, u* and ¢,” must now be regarded as
functions of &.

2.2 The two basic problems

The step in wall temperature. In [1], [2] and [3],
the problem solved was that in which the wall
temperature equalled the stream temperature
T upstream of the plane x == 0, but was held
at the uniform value Ts downstream of this
plane. The initial and boundary conditions were
therefore:

xt=0,ut(or §) =0 o
all x+, u* (or &) > o } T=Te @
xt*>0,ut(or §) =0 T=Ts. (9

Solution of the equation then yields 7(x*, u*),
and therefore the temperature gradient at the
wall as a function of x+. This gradient is related
to the local heat flux and other quantities as
follows:

(0T/oé)s _ (0T/ou)s

PTTG— Ts To — Ts (10)
Npr Nst
= (2 (n
a
=Ner e (12
= Sy, say (13)

where Ns; and Np, are respectively the local
Stanton number and the laminar Prandtl number,
¢y is the local drag coefficient, and « is the local
heat-transfer coefficient.

The function Sz (x*) is important because it
can be used, by the employment of well-known
superposition techniques, for the computation
of the heat-flux distribution with an arbitrary
wall-temperature distribution.

The step in heat flux through the wall. In [4]
solutions to the differential equation were
obtained for the situation in which the non-
dimensional heat-flux was zero upstream of the
plane xt = 0, but had a uniform value down-
stream of this plane. The initial and boundary
conditions were therefore:

xt=0,ut(or &) =0
all x*, wut(or §) - o

}T: Te (14)

oT
xt>0,ut(or §) =0 (az.)s = const
(15)

Solution of this problem yields 7' (x+, u*) and
therefore the wall temperature 75 as a function
of x*. The solution was expressed by Smith and
Shah [4] in terms of Ngs:/+/(cys/2). For uniformity
with the practice of [2] and [3], in the present
paper solutions to this problem will be expressed
in terms of S, which is related to other variables
by:

Npr N,
0= (e (16)
(0T [6&)s
=Neep Dy (D)
oT/ou*
) (19)

'c'(.rsp)l/z
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where ¢ is the local heat flux 7o the interface.
Of course, S, is related to Stanton number, etc.,
in precisely the same way as is St; the different
subscript is merely a reminder of the different
boundary condition (heat-flux rather than
temperature).

The S, function is important because it can
be used, by the employment of well-known
superposition techniques, for the computation
of the wall-temperature distribution resulting
from an arbitrary heat-flux distribution.

The functions € and ;7. The non-dimensional
total viscosity and thermal conductivity are
postulated to be functions of u* and the laminar
Prandtl number alone. For want of better
information, the following relations were adopted
in [1], [2], [3] and [4]:
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where K and E are constants (K == 0-4 and £
9-025 were adopted in [2] and [3]; K == 0-407 and
E =:10-09 were adopted in [1] and [4]).

Inspection of these expressions reveals that
close to the wall, i.e. at small ¥*, ¢! is equal to
Npy times ¢, ; far from the wall, i.c. at large
u', €, and ¢ are equal. Whereas (20) will be
adopted throughout the present paper. we shall
find reason to modify (21} below. €| /¢, is. of
course, the “total Prandtl number™.

2.3 The existing solutions

The Sp function computed in references [2}
and [3] is plotted in Fig. 1 (full lines). [N.B. There
the abscissa i1s x*/Npy; rather than x+ and the
parameter Npy/Npr: rather than Np,. The
present section of the report is written as though
the Nprs's were absent (i.e. equal to unity), as

R B Kui . R . . ~
& 1 (KJE) [ei I~ Ku indeed they were in the work of references [2]
(Ku 221 - (Kit)331) (20) and [3] The reason for the appearance of the
and Npr,t's is explained in section 3.3.}
At low values of xi, the function has the
¢, = (1/Npy) & (K/E)[eKu' | — Ku! asymptotic form:
(Kuty2 2! — (Ku™)3/31) (21) Sy - 0-53835 (xt/Npy)i, 22)
1
e e
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&l S OO e i [ T 07w
Z = A ‘ : L ps
sl : ; —— g" &
Z|g . . B : beid 50 oy
= 00°0 1
pne g [IERS
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Fira. 1. Numerically calculated solutions of equation (1).
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At large values of x* and large values of Npr, the
function has the asymptotic form:*

sin (w/4) K5/
(nfd)  (E4)TA

The first of these asymptotes results from
substituting 1 for ¢ and 1/Np, for ¢; inequation
(1) as shown in the Appendix. It is the solution
of Leveque [5], Owen and Ormerod [6] and
Lighthill [7]. The second asymptote is obtained
by neglecting the left-hand side of (1), sub-
stituting 1 for ¢ and taking only the first two
terms of the expansion for ¢, . It is easily shown
that these substitutions are appropriate. With
K = 04 and F = 9-025, the right-hand side of
equation (23) is equal to 00746 NY*; with
K = 0407 and E = 10-09, its value is only
slightly different. Accordingly ordinates equal
to 0-0746 NY* have been marked as a scale of
Npr on the right-hand margin of Fig. 1.

The S, function computed in reference [4]
is also plotted in Fig. 1 (broken lines). At iow
values of x+, the function has the asymptotic
form:t

Sp > . N3, (23)

Sq¢— 0-651 (x+/Npy)t/s, (24)

The derivation of this expression is given in the
Appendix. At large x* and large Npr, the S¢
function tends to the same asymptote as the St
function namely:

N sin (=/4)
T (=8

Figure 2 is based on values of ¢ and u*,

which have been tabulated by the authors of

references [3] and [4]. Examination of equation

(7) in conjunction with (20) and (21) shows

-that, at large u* and Np, the §{ ~ ut relation
takes the asymptotic form:

w4 (EADVA
sin (7/4) © KA

K34
N L )

£ ut + (Np, — 1) N5 Ve,

(26)

* The Gardner-Kestin [3] solutions show significant
deviations from this asymptote, even at large Prandtl
number, perhaps because of the accumulation of
rounding errors in the computations.

+ The Smith-Shah [4] solutions show significant
deviations from this asymptote, presumably because the

integration intervals were excessively large at low x™*.
2X
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With K = 0-4 and E = 9025, this becomes:
£—ut + 13-4 (Npr — 1) Np V4 (26a)
At low u*, on the other hand, it is equally

obvious that ¢ is equal to Np, u*. Figure 2 also

loooo

toco

£ o0 — 1

Fic. 2. Values of &u™, Np,) from references [3], [4] and
[8]. When generalized to Npr: # 1, the ordinate becomes
/Npr,: and the parameter Np/Nepi.

contains some curves based on tables of £ com-
puted by Mills [8]. It should be noted that, as is
shown in the next section, the symbol ¢ has
the same significance as the symbol ¢+ used by
Deissler [12] and other authors for the dimen-
sionless temperature in Couette-flow analyses
of heat transfer.

Table 1 contains values of (¢ — u*) deduced
from the tables presented in references [3], {4]
and {8]. The constancy of (§ — u™) at large u*
is evident. Also included for comparison are
values of 13-4 (Npr — 1) N5}

2.4 Regularities in the existing solutions at
moderate and large x+
Table 2 contains the values of Sy and S,
which are reported in references [3] and [4]
together with corresponding values of Np,/S, i.e.



748 D. B. SPALDING
o | s
. i t .
S i i -
" : |
x [
o 1000 . -
o
5 ; 7 B
— — .
3, I
w5 — H P Lo
, IR NN LA NI,
S ) A0
! i 2 i1 S L
he s [ R
= |
R - | G From Sy values reference 3|
: . e C From S¢ values reference |4]
KO iin  * From £~ w* values (3], [4], [}
N - _.-L_. Straight line has ordinate 13-4 A, ¥/
o | U . ,
T e |
- ; i : ! :
zi S
i .
10 i | !
Ot i to 100 {000
NP/

Fi1G. 3. The P-function deduced from exact solutions. When generalized for Npr: 7 1, Npr
must be replaced by Npr/Npr.t.

(cs/2)12/Ng;, and [Npr/S — 1/S1] where Sy refers
to the corresponding value for Np, = 1 and the
same x*. (N.B. Actually, x*/Npr; appears in
Table 2 rather than x+, and Npy/Npr,: in place
of Npr. The presence of Npr will be ignored in
the present discussion, that is to say that its
value will be assumed to be unity. The reason
for including Np,: will become apparent in
section 3.3.)

Inspection of the column for {{cs/2)V2/Ngt —
1/51] shows that this quantity exhibits only small
variations for x* values greater than or equal to
104, This behaviour may be expressed as:

xt =104 Npy/S~1/S1 + P  (27)

where P is a function of Prandtl number, and is
slightly dependent on whether the Sz or the .S,
function is in question. The variations are
probably as much due to minor inaccuracies
in the tables of references [3] and [4] as to any
other cause.

Figure 3 shows a plot of P, or rather 13-4 4 P,
versus Npr. The values of P are the values which
Table 2 shows are taken by Np/S — 1/51 at
large x*. Circles represent deductions from Sp
values, squares represent deductions from S,
values. Also shown, as crosses, are some values
taken by £ — ut+ 13-4 at large u*, deduced from

Table 1; evidently they lie close to the P values.
The extent to which equation (27) is obeyed,
and the ease of interpolation in Fig. 3, suggest
an cobvious and easy way of extending the
existing tables of St and §,. Before exploring
this possibility however, it is fruitful to examine
the reasons for the great regularity which the
St and S, functions have been seen to possess.

2.5 Explanation of equation (27)

The following argument explains why the
Sr and S, functions obey equation (27) at
moderate and large x*:

(i) Consider the function 4, (x*) which is
related to the wall temperature downstream of a
line sink of heat, of strength ¢’ (e.g. in Btu/ft h),
in an otherwise adiabatic wall, by:

Te — Ts == (§'/cp) Aqg. 28)

This function can be obtained by solving the

partial differential equation (1) subject to the
conditions:

xt =0,u*(or £) >0

all x*, ut{or §) - o

}: T = T(}‘\
(29)
xt >0, ut (or £) == 0:(@T/0¢) =0

xt>0: [o(T —T¢) cut ¢ dut zq’v’/cu}j
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Familiarity with the corresponding problem of
heat-conduction theory, namely that of the
transient temperature distribution in a medium
subsequent to the release of an instantaneous
heat source, makes it obvious that successive
temperature profiles will have the qualitative
features of those sketched in Fig. 4: specifically,
the profile will become broader and lower as x+
increases, and will exhibit a maximum at the wall.

Q

FiG. 4. Sketch of temperature distributions at successive
sections through a turbulent boundary layer downstream
of a line heat sink.

(ii)) Now the (laminar) Prandtl number can
only influence the heat-transfer process in the
immediate vicinity of the wall, as may be seen
from consideration of equation (21) for example.
Yet, as Fig. 4 shows, the temperature gradients
in this region are negligible except immediately
downstream of the heat sink (small x*). Since
the Prandtl number cannot exert its influence in
the absence of a temperature gradient, the 44
Sfunction must be independent of Prandti number
at moderate and large x+.

(iii) The S, function can be generated from
the 4, function by regarding a continuous heat
flux ¢'' as made up of a series of line sinks.* We
see that the wall temperature must be:

* This procedure for deriving S, is used in the Appendix.
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qu
Ts —Te=] —¢'d
8 ¢ Jo cpq X
x+ q‘fl
— —2  _dxt
L AqC(Tsp)1/2 dx (30)

and so, since §"/[c(7sp)1’?] = const. by hypo-
thesis and S, is defined by equation (19), we
have:

Ner

oPr +
S, fAgdx

d /[Nps
o (57) =4

(iv) But, as explained in (ii), 4, must be
independent of Np, for moderate and large x+.
It follows that the Prandtl number can only
influence the value of Np/S, by way of the
integration constant in this x* range. In other
words, Npy/S, must be equal to a function of
x* plus a function of Prandtl number. Obviously
{S¢,1)! provides a suitable version of the
function of x*.

(v) As inspection of Fig. 1 shows, Sy and S,
are nearly equal in the Prandtl number range in
question; moreover they have the same asymp-
tote at high x* and Np, [equations (23) and
(25)]. 1t is, therefore, to be expected that Np,/S»r
differs from 1/S7 ;1 at the same x* by a quantity
which depends on Np, alone. This is what it was
desired to prove.

Equation (27) can also be interpreted in
another way: Np/S is equal, according to
equation (19), to (Tg — Ts)c(rsp)r'2/¢”’; it thus
has the significance of the non-dimensional
“resistance” to heat transfer (temperature
difference per unit heat flux) of the whole
boundary layer. 1/ is therefore the “‘resistance”
which the boundary laver would have if the
fluid Prandtl number were unity. If P is defined
as Npy/S — 1/51, it can be called the “extra
resistance” associated with the fact that the
Prandtl number differs from unity. Equation
(27) therefore implies that this “extra resistance”
is dependent on Prandtl number alone at
moderate and large values of x*.

The same interpretation aids the understand-
ing of why the asymptotic values of ¢ — ut
are closely equal to the asymptotic values of P,

or

€2Y)
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as Fig. 3 clearly shows. For, in the analysis of
heat flow through a boundary layer having no
temperature variation in the x* direction, ie.
in a Couette-flow analysis, we should calculate:

T v fue e
= C( TS) (TSP) — j f“. du

o1t e
0 €

q

- +J ' (eé}m 1) dut.  (322)
0 \€ /

Now comparison of (32a) with (7) shows that ¢
is exactly equivalent to ¢, the non-dimensional
temperature appearing in the Couette-flow
analysis; ¢+ itself, when described in the terms
of the last paragraph, can itself be regarded as the
“resistance to heat transfer” of the layer of
“thickness™ u". So the “extra resistance” due to
the fact that the Prandtl number is not unity
is given by the quadrature appearing in equation
(32)a, and is also equal to & — u™*. It is no sur-
prise that & -— u* is a function of Prandtl
number alone for moderate and large u*, for
it is only in the low u* region that the integrand
of the quadrature is finite. We have already seen,
in equations (26) and (26a), particular forms of
the £ — u* asymptote, calculated by inserting
(20) and (21) in (32a).

Summarizing, we may conclude that exact
solutions of the partial differential equation of
heat transfer across a turbulent boundary layer
have shown that, at moderate and large values
of x+, the effects of the Prandtl number of the
fluid are confined to the value of the effective
“resistance” to heat transfer of a thin layer
adjacent the wall. Convective (i.e. &/0x™) terms
only need to be considered in regions where the
fluid Prandt! number is without influence. This
conclusion may be regarded as obvious; never-
theless it could not have been drawn with such
complete certainty had the authors of references
[2], [3] and [4] not computed their exact solutions
of the partial differential equation. The con-
clusion can be regarded as a limited rehabilitation
of the Couette-flow analysis.

2.6 Approximate expressions for the P-function

The significance of the P(Npy) function may
become clearer if the reader is reminded that a
Couette-flow analysis of the kind originated by
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Prandtl [9] and Taylor [10], would lead us to
write:

(32b)

where 4 is a constant, variously taken to be
5-68 or 8-9, which measures the non-dimensional
thickness of the laminar sub-layer. Other
authors including von Karmdn [18], Rannie [19]
and Deissler [12] have suggested other forms of
the P function, but it would be inappropriate
to review these here. We merely take equation
(32b) as a reminder of the convenience of having
an analytical expression for the P function.

There are three aspects of the P function which
require attention at the present juncture:

(i) Approximately, the P values displayed on
Fig. 4 can be represented by the relation:

P =134 (N34 - 1). (33)

The coefficient, 13-4, is, as already stated, the
value of the expression (w/4)(E4N)1/4/[554sin
(w/4)] appearing in equations (23), (25) and (26),
for K =104 and E = 9-025; equation (33) is
therefore certainly correct at both infinite and
unity Prandtl number. The equation is shown
as a straight line in Fig. 3.

The fact that the points obtained from Table 2
tend to lie below the line is almost certainly due to
inaccuracies in the Table 2 values. The values of
P at low Prandtl number contained in Mills’ {8]
report have not been included on the graph, but
they lic appreciably below the straight line.

(i) It would no doubt be possible to find an
analytical relation between P and Npy which
was in even closer agreement with the points
marked on Fig. 3 than is equation (33). How-
ever, it must not be forgotten that, though the
e} function of equation (20) is known to agree
well with the experimental velocity distribution
data [11], the ¢ function of equation (21) is
little more than a guess; no attempt whatever
has been made to choose this so as to fit experi-
mental measurements. In this connexion it is
relevant to mention that Deissler [12} has made
use of an ¢ expression which, like that of
equation (21), increases in proportion to (u*)*
near the wall. Deissler’s expression contains
however, a variable coefficient, the value of
which was chosen so as to fit experimental data
for heat and mass transfer at high Prandtl or

uhzul & - ut = (Npr — Duf
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Schmidt numbers. If that value were adopted
here, it would be reasonable to replace equation
(33) by:

P =3895(Ny2—1). (34)

It may be expected that equation (34} would
iead to more correct heat-transfer predictions
than the values of P implicit in references [3] and
[4].

(1ii) In any case, however, there is no necessity
to guess the nature of the P function, or to force
it to fit any particular analytical expression;
for the function can be derived directly from
inspection of the prolific heat-transfer data which
are available. This has been done by one of the
author’s co-workers; the result will be the subject
of a separate report. In what follows, we merely
assume that the function P(Np;) exists.

2.7 Approximate expressions for the Sr and
Sq functions for moderate values of x+
Relation between x+ and Npy s for a flat plate.
Since “‘length Reynolds number” is a more
familiar concept than x™, it will be helpful to
establish the relation between these quantities
for the particular case of flow of uniform stream
velocity wug. It will be sufficiently accurate to
start from the approximate law for local drag:

_ ~1/5
00296 (“G)ff’)
2 n

= 040296 (Nge,2) V5. (35)

The definition of x* (2) now permits the easy
derivation of the following relation:

xt = 0-191 (Nge,2)"". (36)

Thus the common Npg. range: 2 x 105 to
5 x 107 corresponds roughly to the x* range:
104 to 108. We shall now derive approximate
expressions for the quantities Sy and S4 which
are valid in this range.

The St function. It is shown in the Appendix
that, when ¢} has the form which corresponds
to the well-known ‘seventh-power velocity
profile”, and the total Prandtl number is unity,

Sr.1 = 0-1479 (x+)-1/8. (37

Treating equation (27) as exact, we can derive
a corresponding expression for Sp. It is:

Sp = Npy [6:76 (xT)1/9 -+ P]L,

(38)
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This expression, with P inserted from equation
(33), will be found to agree closely with the values
calculated by Gardner and Kestin [3]; the
comparison is made in Table 3. With P inserted
from equation (34), better agreement with
experimental data might be expected. It should
be noted that the “seventh-power profile” is a
good approximation to the real velocity profile
in the Reynolds-number and x* ranges in
question.

The Sq function. It is shown in the Appendix
that the “seventh-power profile” assumption
also implies:

S¢,1 = 01509 (x )V, 39
it may therefore be expected that, for 104 <C
xt <L 108, the following relation should yield
S¢ values in good agreement with those of Smith
and Shah [4]:

Sq = Npr[664 (xD)V® + P71 (40)
with P inserted from equation (33). Table 3
again shows that the expectations are realized.
The use of equation (34) for the P function might,
once again, yield better agreement with experi-
ment.

2.8 Approximate expressions for the St and Sy
Junctions for moderate and small values of x*
It may be desired to use approximate formulae
for ST and S, which are also valid at arbitrarily
small values of x*, i.e. at those for which the
thermal boundary layer is confined almost
wholly within the laminar sub-layer. Since the
asymptotic relations (22) and (24) are available
to act as a guide, it is fairly easy to derive
formulae which fit the exact solutions both at
low x* and at values between 10% and 108, and
which have a good chance of fitting at inter-
mediate values also. The following relations
may be found to involve a reasonable comprom-
ise between accuracy and complexity.

Ner 1
St = {{5*76 (x)7 +"P} +

x+\ 131414
+ [0-53835 (prr) } f @n
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and

S = NPr 4
A lsmweia] ¢

1 [0.651 (%)“1/3}4}”4. (42)

These equations are readily seen to reduce
respectively to equations (22) and (24) at low
x*, and to (38) and (40) at large x*. If P is
inserted from equation (33), they can be expected
to yield results in good agreement with those of
references [3] and [4]). This last expectation may
be checked by reference to Table 4, in which
comparison is made between the exact and the
approximate values.

Equations (41) and (42) may of course be
used for filling in the as-yet-uncharted regions
of Fig. 1. Indeed, in view of the uncertainty
about the exact nature of the ¢, function and the
corresponding P (Npy) function, the equations
may be thought to render unnecessary any
further computations of the kind presented in
[3] and [4] until the said uncertainty has been
removed by further examination of experimental
data.

3. GENERALIZATION OF THE THEORY FOR
NON-UNITY PRANDTL NUMBER IN THE TURBU-
LENT REGION

3.1 The necessity for generalization
One of the main assumptions of the Couette-

flow analysis has been shown to be well-justified,
namely the assumption that the laminar-sub-
layer region acts solely as a “resistance” to heat
transfer. It is therefore profitable to recall that
the Couette-flow analysis for heat transfer from
an isothermal flat plate is in marked disagree-
ment with experiment, when the “total” Prandtl
number in the turbulent region is taken as unity.
For such a situation, with Ng 1 placed equal to
cr/2 as is implied by the turbulent-Prandtl-
number assumption, equation (27) would lead
to:

crl2 1/2

Nee 1 4+ (¢f/2)12P.
The expression on the left-hand side is the so-
called Reynolds analogy factor; on the right-
hand side, P might be substituted from equations

(43)
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(33) or (34). In the former case, for a Prandtl
number of 0-7, P has the value: —3-04.

Now the presence of (cz/2)1/2, which varies with
the Reynolds number of the plate, implies that
the Reynolds analogy factor is appreciably
influenced by Nge . Thus, if ¢;/2 is calculated
from equation (35), (¢f/2)Ns: equals 0-816 at
Npes = 105 and 0-927 at Nge,z = 107. Experi-
mental data do not reveal nearly so strong an
effect of Reynolds number.

Similar conclusions may be drawn from
inspection of recovery-factor data, which again
fail to reveal the strong Reynolds number effect
which would exist if the “total” Prandtl number
in the turbulent region were unity.

Whereas in the past it has been possible to
ascribe the discrepancies between prediction and
experiment to the fact that the Couectte-flow
analysis neglected the differential coefficients
with respect to x, the findings of section 2 of the
present paper show that this explanation is
untenable. It is therefore necessary to examine
whether the solutions of the partial differential
equation published by Gardner and Kestin [3]
and by Smith and Shah [4] can be generalized
to non-unity “total” Prandtl number, or whether
they must be discarded and replaced by solutions
based on a new ¢, function.

3.2 Experimental evidence for the value of the
turbulent Prandtl number

Kestin and Richardson [13], in their review of
heat transfer across turbulent incompressible
boundary layers, have collected data for Npy ¢
deduced by several authors from measurements
in turbulent pipe flows. Figure 5 (Fig. 11 of [13])
illustrates their findings. As may be seen, the
various curves show marked disagreement with
each other, but nevertheless strongly suggest
that, if a constant value is to be assumed for
Npr, 0-8 would be more reasonable than
1-0.

Van Driest [14] and Spence [15] have developed
theories for the Reynolds analogy and recovery
factors of a flat plate in turbulent flow which
account almost completely for the convective
(¢9/6x) terms in the partial differential equation
and which allow Npr; to be a constant, different
from unity. Comparison of the results of these
theories, which differ more in appearance than
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in essence, with experimental data for air suggest
that Npr: is about 0-86.

Values of Npr; may also be deduced from
measurements of the temperature profile in fully
developed turbulent pipe flow. Such measure-
ments have recently been reported by Johnk
and Hanratty [16] who found that, for values of
y* from thirty to two or three hundred, the
temperature profiles could be represented by:

tt =33 + 51 logio y+. 44

Here y+isof course y (s p)Y'2/u, where yisdistance
from the wall, and 1+ is (T — Ts)c(rsp)V2/¢". 1t
is well known [17] that, in precisely this y+ range,
the velocity profile can be expressed by:

ut =535+ 575logio y*. (45)
Elimination of y* between (44) and (45) leads to:
1+ =0-887 ut+ — 1-58 46)

We shall now show that the coefficient of u*
can be identified with Npy ;.
By differentiation of (46) we obtain:

+ +
ey
dy

& @7)
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When 7+ and u* are re-written in terms of T, u
and other variables, this equation becomes:

1 dT 0887 du

e = e — 48
¢'dy 7s dy “8)

4

If the local heat flux is equal to the heat flux
at the wall, ¢, we may write:

1_088
c. k=
ie. Npy. = 0-887. (49

This value of the turbulent Prandtl number is in
good agreement with the value of 0-86 deduced
in references [14] and [15].

We can also learn something about the
resistance of the laminar sub-layer in the
experiments of reference [16] from the fact that
the additive constant in equation (46) is —1-58.

Let us suppose, generalizing equations (20)
and (21), that:

b =1+ @uh (50a)

and:
e = (1/Npy) + (1/Npr,e) ¢ (u*)  (50b)

where Npr of course refers to the laminar
Prandtl number and Npy; is a constant. In a
Couette-flow analysis, differential coefficients
with respect to x are neglected. Then equation
(1) becomes an ordinary differential equation,
with solution:

N,
tt = Npptut + Npry (ﬁ% - 1)

u®+ 1
L syl D

The second term of equation (51) can be
identified as the extra resistance of the laminar
sub-layer, associated with the fact that Np, is
not equal to Npy¢; let us call this:

Npr,t P (Npy/Npy,s).

Generalizing equations (33) and (34) we may
guess that P is equal to a constant times
[(Npr/Npy)»4 — 1); then, equating Npr: P to
the —1-58 appearing in equation (46), with
Npy,; = 0-887 and Npr = 0-71, we obtain:

P = 11:57 [(Npy/Npy )34 — 11. (52)
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Thus the data of Johnk and Hanratty yield a
coefficient rather nearer to that appropriate to
[3], [4] and [8] than to that deduced from
Deissler’s recommendation.

Of course this brief review does not finally
settle the questions of whether Np,: can be
taken as a constant, independent of Np, and
other influences, of what is the best value of the
constant, or of what is the relation between
P and Np./Npr: Nevertheless it suggests that
a theory based on equations (49) and (52)
should give fairly good predictions of heat
transfer for air. It further encourages the
development of a complete heat-transfer theory
based on a constant value of Npy¢; this develop-
ment now follows.

3.3 Generalization of the solutions of [3] and [4]
We shall now show that the solutions dis-
played in Fig. 1 are still valid for Np,; = const
# 1, provided that appropriate adjustments
are made to the expressions for abscissa and
parameter. Equation (1) may be written, on
introduction of (50a) and (50b), as:

er 1 o
ext ut (1 + ¢)ou+

(1/Ney) + (1/Nery ¢ €T
{, R e;u‘%J' (53)
This equation can be re-arranged as:
o
6’ (X+/NPr?t) -
B 1 & ((Npyrt/Npy) + ¢ T
ER L { 1T aujf 4

Now Gardner and Kestin [3] and Smith and
Shah [4] solved the equation:

oT

ox+

1 d {'(1/Npr) + ¢ 6T (55)

Tut (I Pout| 1+ aurf
with, of course, a particular expression for ¢,
namely: (K/E) [exp (Ku*) — 1 — Kut —
(Ku+)2/2! — (Kut)3/3!], which has been shown
in [11] to fit experimental velocity distributions

rather well. It follows that the solutions con-
tained in [3] and [4] are still valid for Npr,: # 1,
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provided that they arc expressed in the form
S (x*/Npy,t, Npr/Npr,t) instead of S (x ', Npy).

It must be emphasized that this generalization
of the solutions of [3] and [4] is only strictly
valid when the thermal boundary layer starts
from a line on the wall at which the velocity
boundary layer already has an appreciable
thickness. When this condition is not satisfied,
and when Npy; 1s less than unity. account
needs to be taken of the fact that the shear
stress within the thermal boundary layer is not
uniform, for example by the method used in
Spence’s [15] theory. This matter will not be
discussed further here.

3.4 Generdlization of the approximate expressions
Jor Sy and Sy
One way of generalizing equation (38) to the
case in which Np;; is not equal to unity, is to
note that equation (A.21) of the Appendix
shows the thermal resistance of the turbulent
region to be approximately:

Nprt

Cxt L9
ST’;:6~76(» ) Npro.

56
\NPr,t ( )

Since the extra thermal resistance afforded by
the laminar sub-layer is Npr P (Npy/Npr ), the
total resistance to heat transfer is:
Npr

—— o - ~+- N, Pr,t P.

57
St Sra (57)

We therefore conclude, making use of equation
(56):

Nsp ST 1 { X 19 1
= = o | 676 | - Pl .
(Cf/z)l/z Ner Nprt 13 (NPr,t) J

(58)

A similar argument applied to the case of
uniform ¢§’'/(s)}/2 leads to:

Nt Sy 1 [ ( x+ )1/9 ]—1
st e L gea (o) —p|
(cs/2)Y2  Npr  Nprp Npr,t

(59)

Equations (58) and (59), with P inserted from
equation (52) and Npr,; placed equal to 0-887,
probably represent the best simple recom-
mendations which can currently be made for
calculating heat transfer through incompressible
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boundary layers in the x* range from 10% to
108. For the isothermal flat plate in air, if we
ignore the fact that the equal lengths of the
thermal and velocity boundary layers renders
the applicability of the theory questionable, we
obtain, from equations (58), (35) and (36):
(cy/2)/Nst = 0-817 for x* == 10* and (ct/2)/Ns:
=0-835 for x* = 106. These values exhibit
a small effect of Reynolds number and a mean
value that is in excellent agreement with the
experimental value which is usually taken to
equal 0-825.

It is possible in the same manner to generalize
equations {41) and (42) and so to obtain expres-
sions for Sz and S, which are valid over a wider
range of x* than those of (58) and (59). The
expressions are:

- Npr/Npr 4
St = {[6-76 (x*/Npr,)V/® + PJ +

x+ -1/374)1/4

S _4*( Ner/Nert 4
17664 (/N )P+ P| T

4 [0.651 (]%)‘1/3] 4}1/4. 61

Once again, P is here to be regarded as a function
of (Npr/Nprys), for example that contained in
equation (52).

(60)

and

4. AN OUTLINE OF FURTHER DEVELOPMENTS
IN THE THEORY
4.1 Relevance of the above results
So far, the line of inquiry into heat transfer
through turbulent boundary layers which is
represented by references [1], [2], [3] and [4],
though more rigorous than that based on the
Couette-flow analysis, has not been extended
to those problems involving non-uniform fluid
properties and mass transfer at finite rates for
which Couette-flow analyses have been available
for many years. An obstacle to this extension
has lain in the apparent prior necessity to
possess detailed descriptions of the ¢} and ¢}
functions which are valid in these situations.
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This obstacle has been partially removed by
the findings described in the earlier parts of the
present paper, where it is suggested that a theory
adequate for heat-transfer prediction at moderate
and large values of x* can be built upon two
elements: a function P(Npr/Npr:), possibly
obtained empirically, expressing the “‘extra resis-
tance” of the region close to the wall; and a
solution to equation (1) with ¢; assumed equal
to ¢ /Npr,s where Npy; is a constant, say 0-887.
In the latter element, quite rough expressions
for ¢ may suffice, as witness the success of
equations (37) and (39), which are based
on power-law expressions for ¢, in giving
good approximations to the solutions of {3] and
[4].

In the following sections, a preliminary
discussion will be presented of the way in which
the regularities which exist in the exact solutions
suggest extensions of the theory to the cases of:
rough walls; mass transfer at finite rates;
and non-uniform fluid properties. Of course it
will be taken for granted that independently
derived theories are available for the calculation
of the shear—stress disiribution on the wall
under these circumstances; for this forms part
of the data of the heat-transfer problem, and
cannot be deduced from our present theory.

4.2 Heat transfer across turbulent boundary
layers on rough walls

The solution of the partial differential equation.
This element of the theory is relatively easily
dealt with: the Sr,; and Sg: functions of
(x*/Npy,;) are precisely the same as those which
are valid for a smooth wall. The reason for
the invariance of the solutions is that there is
little reason to suppose that roughness affects
the ¢; function anywhere except at low values
of u*; and we have already seen that precise
description of the e function is unnecessary
close to the wall when Np, equals Npy; Of
course, the shear—stress distribution on a rough
wall is markedly different from that on a smooth
wall, other conditions being equal; however,
we have already emphasized that the calculation
of this distribution belongs to a different chapter
of fluid-dynamic theory which is not to be
touched on here.

The P-function. For smooth walls, P has been
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assumed above to be a function of Npy/Npy:
alone. When the wall is rough, however, at least
one further parameter may be expected to
influence it, namely y,-, defined by:

V/(73p)
‘U,
where y, is the “height of roughness element”.
The characterization of roughness by such a
non-dimensional quantity is of course well
known [17}; strictly speaking the geometrical
shape and relative spacing of the protruberances
on the wall are also important, but some success
has been achieved in using y/ alone as the
characteristic by defining y» as a “nominal”
rather than ““actual” dimension of the roughness.

Two recent publications, by Dipprey and
Sabersky [20] and Owen and Thomson [21],
fortunately throw much light on the nature of
the function P (Npy/Nprs, y, ). Figure 6 shows
values of [(cy/2)V2/Ng: — (c5/2)~1/2] versus y}
deduced from data presented in these two
references. If Np,; equals unity, the ordinate
has the significance of P; it is seen that P is
practically constant for y;~ < 10, that P rises
slowly with y when this quantity exceeds about
100, but that P has a minimum value when y;
iies between 10 and 100 for the higher values of
Prandtl number.

+
r

(62)
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If the Prandtl number of the turbulent region
is not taken as unity, but as a different constant,
Npy i, the ordinate of Fig. 6 has the significance
of Npr i [P+ (Nprt — 1) (¢r/2)~1/2), as is seen by
consideration of equation (50), and the sub-
sequent discussion, with ¢+ and u* evaluated
for the main-stream state of the fluid. If Np,
is taken as 0-887 and (cs/2) is estimated to be
0-003, it will be found that the values of the
apparent low-y,- asymptotes of Fig. 6 agree fairly
well with the P-function of equation (52).

A careful study is needed of all the data
available in the literature for heat transfer from
rough surfaces before a recommendation can
be made for the P (Npr/Nprs, ¥,7) function and
the associated Npr¢ value (function?) which
should be used in design. Nevertheless it is clear
that the work of references [20] and [21] forms
an already quite advanced starting point,
particularly since the authors of both these
references have suggested expressions for the
asymptotic forms of the P function for high y, .
based on the hypothesis of a particular model
for the flow induced by the roughness elements.
It is to be expected that further research in this
field will quickly bear fruit. Of course, it will
be necessary to carry out experiments at both
higher and lower Prandtl numbers than have
been used so far.
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FiG. 6. Experimental data showing the influence of wall roughness on the P-function.
If Npr,: = 1, the ordinate is P; otherwise the ordinate is Ner,: [P + (Npr,t — 1) (cr/2)"V/%).
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4.3 The effect of mass transfer

The solution of the partial differential equation.
When mass transfer occurs at appreciable rates
across the wall, as in transpiration cooling,
vaporization and condensation, the differential
equation (1) requires modification, even for
the case of unity Npy/Nprt; for variations in
shear stress in the immediate vicinity of the wall
can no longer be neglected; and a convective
component of heat transfer normal to planes of
constant u+ must also be accounted for. It is
not proposed to discuss this matter here, except
to remark that, at least in the case in which the
thermal and velocity boundary layers start from
the same line, an adaptation of the method of
Spence [15] is capable of yielding a fairly simple
solution. The author hopes to demonstrate this
in a later publication.

The P-function. We must now expect that P
depends on a non-dimensional expression for
the mass-transfer rate, as well as on Npy/Npri;
such an expression is m'’ (75p)~1/2 where m’’ is
the local mass-transfer flux. The influence of
this quantity on P can only be established
experimentally, but suitable data currently
appear to be lacking. This is another field in
which a relatively small amount of systematic
research would yield rich information.

4.4 The effect of non-uniform fluid properties

When the temperature difference across the
boundary layer is large, or when the Mach
number of flow is high, the values of u, p and
Npy vary significantly, particularly in the laminar
sub-layer. It is therefore, to be expected that the
thermal resistance of this layer is influenced by
at least the first and possibly the second gradients
of these properties as functions of distance from
the wall. Thus the P function may be expected
to vary with the arguments indicated by the
following expression, in addition to Npr/Npr ¢, ¥,
and m'" (rgp)~V2:

17 0 7
p=p|(t2) (L. 22y (*2+)
poutls’ \p " out)s’ \pout?lg
1
PR

where subscript S of course denotes values at
the wall.

(63)
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The first two of these are related to the local
heat flux by way of the property functions:
w(T) and p(T); they are equal to zero for an
adiabatic wall. Possibly the second two are only
important in the latter case.

Numerous experimental data are available
for heat transfer under the relevant conditions,
and it is curious that (so far as the author is
aware) no attempt has been made to deduce the
above P function from these data. Of course
some authors, notably Deissler [12], have
implicitly calculated the function by making
arbitrary assumptions about the € and ¢
functions; invariably some sort of agreement
between experiment and prediction has been
achieved. Since however the comparison has
usually been made in terms of Nusselt number
at a specified Reynolds number, i.e. at several
removes from the initial assumptions, a sound
assessment of the validity of the assumptions
has been hard to come by. What seems to be
required is a comprehensive review of experi-
mental data, plotted for example in the form of
P versus [(1/w) (6n/out)]s with other parameters
held constant, and with the ‘‘theoretical”
curves plotted for comparison. Such plots would
permit a sounder judgement of whether the
“theories” have anything to recommend them.
Incidentally, they would also permit purely
empirical P functions to be deduced which
could thereafter be used for heat-transfer
calculations. This too is a task for the future.

Of course, the solutions of the partial differ-
ential equation for Npy/Npr,: = const. must also
be re-examined. However, since the viscous
layer is unimportant in these problems, the
variation of viscosity will be of no account.
Moreover, if Spence’s [15] suggestion, viz. that
it suffices to replace y by [pdy, proves to be
correct, only minor changes will be needed.
The study of the P function is likely to prove
more rewarding.

In high-Mach-number problems, it is not
sufficient merely to know the Stanton number:
the recovery factor, Nrr must also be calculated.
It is therefore perhaps worth remarking that a
reasonable expectation from the above results,
which receives partial justification from Spence’s
paper, is that the recovery factor can be expressed
as:
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Nrr  Nrrn

/2 )2
where Ngr,1 is the recovery factor which would
obtain if Np, were equal to Np,: throughout the
boundary layer, and R is a function of Np,/Np, ;
which accounts for the fact that Np, is not equal
to Nprs in the laminar sub-layer. R can easily
be calculated for a Prandti-Taylor sub-layer
{(i.e. one having a sharp discontinuity between
laminar and turbulent regions); since, when
compared with Ngp, it is multiplied by ¢/2, its
influence is small. Npp,1 can be calculated by
Spence’s method and for the flat plate is found
to be not very different from Npr s It is therefore
understandable that the recovery factor of a
flat plate with a turbulent boundary layer in
air is found to be quite close to 0-887 and to be
practically independent of Reynolds number.

+ R(Np/Npr)  (64)

5. CONCLUSIONS

{(a) Exact solutions of the partial-differential
equation for heat transfer across a
turbulent uniform-property boundary layer
have been examined and shown to exhibit
regularities, in the region of moderate
and large longitudinal distance, which
imply that the molecular properties of the
fluid exert their influence solely through
the agency of a “resistance” to heat
transfer at the wall. In this respect the
Couette-flow analysis of heat transfer is
justified; however, the neglect of the 2/ox
terms in the turbulent part of the boundary
layer, which is also part of the Couette-
flow analysis, is only justified at high
Prandt]l number, or when the thermal and
velocity boundary layers are co-extensive.

(b) Approximate analytical solutions have been
provided which give good fits with the
exact sofutions for moderate and large x+
lequations (58) and (59)] or for the whole
range of x- [equations (60) and (61)].

{c) It has been argued that the assumption
that the turbulent Prandt] number is unity
is no longer tenable, but that the existing
exact solutions of the partial differential
equation can be generalized so as to hold
for any uniform value of Npr ..

(d) Tentative recommendations have been
made for the value of Np,; (= 0-887) and

D. B. SPALDING

for the form of the P-function {equation
(52)].

{e) Methods have been indicated of extending
the theory to the cases of a rough wall, mass
transfer at an appreciable rate, and non-
uniform fluid properties. It is suggested
that progress can be made most reliably
and swiftly by experimental studies of the
influence of various non-dimensional argu-
ments on the P-function: the need for
exact knowledge of the variation of e,
with u* appears to be correspondingly
diminished.
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APPENDIX
Power-law solutions for Npy = Npy:
The isothermal wall problem. Equation (54)
becomes:

oT 1 &r
Fw N AT pacs A
Suppose
(1 + ¢) = ab (ur)r—1. (A.2)
This corresponds to the velocity profile
yt=[§e dut =a @ (A.3)
i.e. to a power-law velocity profile.
Define:
9 = ut/{(xT/Np )/ @+0) (A4d)
and
_TI'—Tg
and suppose:
8 = 8(n). (A.6)
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The validity of this supposition will be demon-
strated by showing that the substitution of
(A.4) and (A.5) into the differential equation
and boundary conditions eliminates both x+/Npy
and u™*.

Differentiation of (A.4) yields:

] 1 =7 d
i e e
and
8 1 d
e dy 9
So the differential equation becomes:
d2e ab do
T e
Rl Ny X 0 (A9)

which confirms the validity of (A.6) as far as the
differential equation is concerned.

The boundary conditions are obviously:
S0 =1 (A.10)

(A.11)

’)7 =
n = o0: § =0,
The absence of (x*/Np,) and u* from these

conditions completes the justification of (A.6).
A first integration of (A.9) yields:

de —ab
— pb+2
I Cexp [(2 b)277 + } (A.12)

and a second integration yields:

i —ab
. 2
8= CJO exp [,2 b)znbj‘-J dn+ D (A.13)

where C and D are arbitrary constants to be
deduced from the boundary conditions, Insertion
of these yields:

" —ab
ot L exp [mfénb+2} dy

= L (A.14
r exp {ﬁi ,,?b+2:t dy (19
0 (2 + bF
But
@ —ab
T4 bee -
Jo P [( THR" ]d”
_[@+ bpre b4 3
_ [“”Eb“] r (ﬂ 2). (A.15)
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Hence we obtain the dimensionless temperature
gradient at the wall as:

()0l ol I

(A.16)
Now
Sr = (T%n:?u—?z (A17)
x+\-1/@+b) dé
() (), @
Hence
_ [ab/(2 + byj @+ ]_v!j 1/ @+b)
STET 06+ 96 + o) ( ) (A.19)

In the laminar region ¢ equals zero so that
a = b = 1. Substitution in (A.19) yields:

Sy = 0-53835 (x*/Npy) 113 (A.20)

This is identical with equation (22) of the main
text.

For the turbulent region in which the seventh-
power profile is a good approximation, suitable

values are: a = 2412 x 1077, b =7 (this
corresponds to the velocity profile ut =
8-8(y1)t/?). Insertion in (A.19) yields:

Sr,1 = 01479 (xt/Npr )19 (A21)

in which the subscript 1 has been added to St
(as a reminder that Np;/Npy; is taken as unity)
and subscript ¢ has been added to Np, since we
are considering the turbulent region. This is the
origin of equation {37) of the text.

The problem of the concentrated heat sink
(section 2.5 of main text)

Differential equation (A.1) is still valid. Once
again (A.2) is substituted in (A.1) and the
independent variable 7 is introduced from (A.4).
This time the dependent variable chosen is @),
defined by:

@ = (To — T) (x* [Ny L01/@ (A22)

and it is postulated that @) isa function of + alone.
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On transformation to the new variables,
(A.1) becomes:

d2@ ab
G T b dy (@n”“) =0 (A.23)
Boundary conditions are:
o . d& ,
n=0: d—n—o (A.24)
=00 =0 (A.25)
and in addition:
ab & @bl dn = cu (Te — Ts)l§.  (A.26)

Once again we note that the original variables
ut and x* are absent from the transformed
equation and boundary conditions, and con-
clude that the postulate @ = @)(y) is indeed
justified.

A first integration of (A.23) yields:

d(ﬁ; ab
= . b+l
+ bhL> Hm const.

The constant is seen to be zero from boundary
condition (A.24).
A second integration yields:

ab
,,,,,,,,, b2
= Cexp {(b ) }
where C is an integration constant to be deduced
from the integral condition (A.26). We obtain:

(A.27)
(A.28)

,‘,:ab -2
_abw CPlep™ ]

o (Te — Ts) r '
7

(A.29)
Now
Jo e [ g an =
2 43
F IR
(b 4 2] (b ¥ 2)
_ ["‘7:5'} G a0
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(A.33)

Hence, s b+ 2 ab 1/(b+2)
cp (Teg — Ts) o (b + 1) [(b + 2)2]
Ag = g - 2b + 3 X+ \ ~L/(+2)

b+ 1 [(b+ 2)2]0+D/o+2) [ (ﬁ'f)] (N_P,)

T+ 2 [ ab ] (A.31) - -
1 BB +2) For the laminar region, a = b = 1 as before.
{F (2b + 3)} (NP ”t) Then:
+
bt? N Sq = 0-651 (x+/Npy)-13

The problem with uniform §" [(rs)V/2
S¢ may be obtained from:

{(x+/Np,

(S9t = J
0

which comes from equation (29) of the text.

Hence

(A.34)

which has been presented in the text as equation
24).

For the ‘‘seventh-power” velocity profile,
a=2412 x 10~7 and b = 7, so that:

Sg1 = 0-1509 (x*/Npr.) V3 (A.35)

I)
Agd (x*/Npr). (A.32) wherein the subscript 7 has been added to Np,

because we are mainly concerned with the
turbulent region of the boundary layer, and the
subscript 1 has been added to S, as a reminder

that Npy/Npy,; is supposed equal to unity.

Résumé—On montre que cerfaines régularités existent dans les solutions exactes de I’équation aux
dérivées partielles du transport de chaleur pour des propriétés uniformes publi¢ée par Gardner et
Kestin [3] et Smith et Shah [4]. Ces régularités permettent le développement de formules approchées
pour le nombre de Stanton qui sont probablement aussi slires, comme moyen de prédiction du trans-
port de chaleur, que le sont les solutions basées sur P'intégration numérique.

Les solutions sont généralisées de telle fagon qu’elies s’appliquent au cas du “nombre de Prandtl
turbulent” constant et différent de 1 et on démontre qu’une valeur au voisinage de 0,887 devrait étre
utilisée dans un travail futur. On présente une discussion sur la fagon selon laguelle la théorie peut-
étre étendue: aux parois rugueuses; au transport de masse a vitesse finie; et aux propriétés non

uniformes du fluide.

Zusammenfassung—FEs werden gewisse Regelmissigkeiten gezeigt, die in den exakten LOsungen
partieller Differentialgleichungen auftreten fiir den Wirmeiibergang bei einheitlichen Stoffwerten,
wie sie von Gardner und Kestin [3] und Smith und Shah {4] veroffentlicht werden. Diese Regel-
missigkeiten erlauben die Entwicklung von Niherungsformein fiir die Stanton-Zahl, die wahr-
scheinlich zur Bestimmung des Wirmelibergangs genauso zuverldssig sind, wie die auf numerischer
Integration beruhenden Losungen.

Die Losungen werden auch auf den Fall ausgedehnt, dass die “‘turbulente Prandtl-Zahl” eine von
Eins verschiedene Konstante ist und es wird empfohlen, in zukiinftigen Arbeiten einen Wert nahe
0,887 zu verwenden. In einer Diskussion wird die Erweiterungsmoglichkeit der Theorie auf rauhe

Winde, endlichen Stoffaustausch und nicht einheitliche Stoffeigenschaften erortert.

Asnnoramus—Iloxasano, 4To CyuIeCTBYIOT OnpefieleHHBIe 3AKOHOMEPHOCTH B TOUHBIX perre-
Huax guddepeHIHATBHOIO YPABHEHUA B YACTHBIX NIPOUBBOIHLIX JJIA TenroobMena ¢ OQHOPOA-
HBHIMHI CBOMCTBAMU, KOTOphe Gpuin onyGauxosanst Fapurepom u Kecrunsiv [3] u Cuurom u
Ilaxom [4]. OTu 3aKOHOMEPHOCTH HO3BOJAIT BHBECTH NpubimenHbe GopMyasl XAA ¥ucia
CraHTOHA, KOTOpHIE, NMOBULUMOMY, CTOIb HANEXKHBL, JJIA pacdera Temiroo0MeHa, Kak u
pelIeHHA, OCHOBAHHbIE HA YUCICHHOM MHTETPHPOBAHMY,

Pemenns 0606mensl Taxum o6pasoM, 4TO OHM CNPABEIIUBLL A CIydas, «TypOyIeHTHOS
yncso IIpaHATIA » eCTh HOCTOAHHAA, OTINYAIIAACA OT efUHUIEL. [JoKasaHo, YTO 3HAa4eHue,
npubiusurtenbuo pasuoe 0,887, gomxHo GHLITH MCIONBL3OBAHO B jajbHelnell pafore. Obey-
MOAOTCA NYTH PACHPOCTPAHEHMA 3TOH TeOpHH NpH NIePOXOBATHX CTeHKAX, Maccoolmene ¢

KOHEYHOH CHOPOCTBI0 W HHAKOCTH € HEOZHOPONHEIMH CBOMCTBAMHE.



